The leucoglycaemic index is a predictor of one-year all-cause mortality in Cuban patients with ST-segment elevation acute myocardial infarction

David Padilla-Cueto1,2,*, MD; Halbert Hernández-Negrín2,3, MD; José I. Ramírez-Gómez1,2, MD; Arlenys Pérez-Valdivia2,4, MD; Ana L. Cárdenas-Sánchez2, MD; and Adrián Alfonso-Izquierdo2, Std

1 Servicio de Cardiología, Hospital Arnaldo Milián Castro. Villa Clara, Cuba. \\
2 Universidad de Ciencias Médicas de Villa Clara. Villa Clara, Cuba. \\
3 Servicio de Medicina Interna, Hospital Arnaldo Milián Castro. Villa Clara, Cuba. \\
4 Departamento de Microbiología. Hospital Arnaldo Milián Castro. Villa Clara, Cuba.

\textbf{ARTICLE INFORMATION}

Received: July 28, 2018
Accepted: August 27, 2018

\textbf{Competing Interests}

The authors declare no competing interests

\textbf{Acronyms}

AMI: acute myocardial infarction
LG: leucoglycaemic index

\textbf{ABSTRACT}

\textbf{Introduction:} The leucoglycaemic index has been proposed as a prognostic marker of death in patients with acute myocardial infarction, but there is uncertainty surrounding its prognostic value to predict one-year mortality.

\textbf{Objectives:} The aim of this study was to determine the prognostic value of leucoglycaemic index for one-year mortality in Cuban patients with ST-segment elevation myocardial infarction.

\textbf{Method:} The data were obtained from the medical records and all cause one-year deaths was the primary endpoint. The leucoglycaemic index was calculated from measurements at admission. The patients were divided into leucoglycaemic index tertiles to be evaluated. Receiver operating characteristics and Kaplan-Meier survival curves were performed. Cox regression model was used for all multivariable analysis.

\textbf{Results:} Three hundred and forty-four patients were assessed (median age, 68 years; 65.7\% males; 25.6\% diabetic). The mortality rate was 25.6\%, being significantly higher in the upper tertile (55.7\%, \(p<0.0001\)). The deceased patients presented a median of leucoglycaemic index significantly higher than the survivors (2.18 and 1.34 respectively, \(p<0.0001\)). The area under the curve for leucoglycaemic index was 0.715 and its cut-off value was 2.2. Any leucoglycaemic index value higher than 2.2 was associated with significantly lower survival (177 vs. 309 days, \(p<0.0001\)) and it was an independent predictor of mortality (HR=3.56, CI 95\%, 2.09-6.07, \(p<0.0001\)).

\textbf{Conclusions:} The leucoglycaemic index is a good predictor for all cause one-year mortality in patients with ST-segment elevation myocardial infarction.

\textbf{Keywords:} Leucoglycaemic index, Myocardial infarction, Mortality, Survival, Leukocytes, Blood glucose

\textbf{El índice leucoglucémico es un predictor de mortalidad por todas las causas al año en pacientes cubanos con infarto agudo de miocardio con elevación del segmento ST}

\textbf{RESUMEN}

\textbf{Introducción:} El índice leucoglucémico (ILG) ha sido propuesto como marcador...
Leucoglycaemic index is a predictor of mortality in acute myocardial infarction

pronóstico de muerte en pacientes con infarto agudo de miocardio; sin embargo, no existe evidencia sobre su valor pronóstico al año.

Objetivo: El objetivo del estudio fue determinar el valor pronóstico del ILG en la mortalidad al año de pacientes cubanos con infarto agudo de miocardio con elevación del segmento ST.

Método: Los datos fueron obtenidos de las historias clínicas y el objetivo primario fue la muerte por todas las causas al año. El ILG se calculó con los valores al ingreso. Para el análisis se divieron los pacientes en terciles de ILG, se construyeron curvas de características operativas del receptor y de supervivencia de Kaplan-Meier. Para el análisis multivariable se utilizó la regresión de Cox.

Resultados: Se analizaron 344 pacientes (mediana de edad, 68 años; el 65,7% masculino; un 25,6% diabéticos). La mortalidad fue de 25,6% y fue significativamente mayor en el tercil superior (55,7%; p<0,0001). Los pacientes fallecidos presentaron una mediana de ILG significativamente mayor que los sobrevivientes (2,18 y 1,34, respectivamente; p<0,0001). El área bajo la curva del ILG fue de 0,715 y el punto de corte: 2,2. Un valor de ILG mayor de 2,2 se asoció a una supervivencia significativamente menor (177 vs. 309 días; p<0,0001) y fue un predictor independiente de mortalidad (HR=3,56; IC 95%, 2,09-6,07; p<0,0001).

Conclusiones: El índice leucoglucémico es buen predictor de mortalidad al año, por todas las causas, en pacientes con infarto agudo de miocardio con elevación del segmento ST.

Palabras clave: Índice leucoglucémico, Infarto de miocardio, Mortalidad, Supervivencia, Leucocitos, Glucemia

INTRODUCTION

Cardiovascular diseases have progressively increased their presence throughout the world, in such a way that they have become the leading cause of mortality. Despite significant improvements in reperfusion strategies and medical therapy, acute myocardial infarction (AMI) remains associated with significant morbidity and mortality.

Inflammation plays an important role in the development of atherosclerotic disease and coronary thrombosis. Previous studies have shown that elevated levels of inflammatory markers are associated with the severity of coronary disease and with a worse prognosis. Despite the existence of novel markers (interleukins, C-reactive protein, homocysteine, natriuretic peptides, fibrinogen, among others), counting leukocytes and their differential components is a rapid, universal and inexpensive tool to establish both prognosis and possible management. Moreover, hyperglycemia caused by an inflammatory and adrenergic response to ischemic stress is frequent and constitutes an independent prognostic factor of death and complications in acute coronary syndrome.

The association of these 2 parameters in the leuko-glycaemic index (LGI) has been proposed as a prognostic marker of in-hospital death and complications in AMI patients. However, it is still necessary to reproduce such results in more studies, as well as to evaluate their significance after one year. Hence, the objective of this study was to determine the prognostic value of LGI in all-cause mortality per year in Cuban patients with ST-segment elevation AMI.

METHOD

Study population

Patients admitted to the Hospital Universitario Arnaldo Milián Castro, Villa Clara (Cuba) were included, with a diagnosis of ST-segment elevation AMI in the period between January 2011 and December 2015. Those with presence of systemic hematological/inflammatory infectious diseases, that may alter blood count, as well as patients with an unknown condition at the end of the follow-up (alive or deceased) were excluded.

Variables

The data were obtained from the medical records. The information regarding personal data, background (age, sex, smoking habit, hypertension, diabetes mellitus, previous AMI, atrial fibrillation, chest pain and heart failure), clinical and laboratory tests at admission (heart rate, systolic and diastolic blood pressure, Killip-Kimball classification, blood count,
neutrophils, lymphocytes, glycemia and creatinine), and coronary reperfusion treatment (thrombolysis, percutaneous coronary intervention or both). The percutaneous coronary intervention performed during admission was taken into account since in our center it is not performed as a primary way. Thrombolysis was performed with recombinant streptokinase.

Leuko-glycaemic index
For the calculation of LGI, we considered that the leukogram and blood glucose levels were performed at admission. The following formula LGI = (glycemia [mg/dl] × leukocytes [10⁶/l])/1000 was used¹⁰.

Definition of the event and follow-up
We defined as a dependent variable death from all causes of patients diagnosed with ST-segment elevation AMI during the 2011-2015 period. This information was obtained by combining a telephone follow-up survey 365 days after admission with data from the provincial mortality registry, from the Statistics Department of the Provincial Directorate of Public Health.

Ethical considerations
The study was approved by the Ethics Committee of the institution. The patients’ personal data were not published and the principles established in the Declaration of Helsinki were followed.

Statistical analysis
The patients were divided into 3 groups according to the LGI tertiles. The Kolmogorov-Smirnov test was used to evaluate the normal distribution of the quantitative variables, which were expressed as mean ± standard deviation and compared by ANOVA; those that did not present a normal distribution are expressed as median and interquartile range; the Mann-Whitney and Kruskal-Wallis U tests were used for comparison.

To determine the differences between the established groups, according to qualitative variables, Chi-square and Fisher's exact tests were used, as appropriate. In order to determine the LGI discriminatory power as a predictor of mortality per year, the area under receiver operating characteristic (ROC) curve was evaluated, and the optimal cut-off point was identified. Survival curves were constructed using the Kaplan-Meier method, according to the tertiles and LGI cut-off point; the survival of these groups was compared through the Log-Rank test.

To determine those factors independently associated with mortality, univariate and multivariable Cox regression was used. We included in the model those clinically significant variables or possible confounders regardless of their statistical significance, and those that in the univariate analysis presented a significance p≤0.01. A bilateral p value <0.05 was considered statistically significant.

The data was processed with SPSS version 20.0 and MedCalc version 8.2.1, both for Windows.

RESULTS
A total of 344 consecutive patients were analyzed, most of them were male (65.7%), and the median of the overall age was 68 years (interquartile range 58-76). The personal history shows that 25% had diabetes mellitus and had suffered a previous AMI, 64.2% had high blood pressure and 33.1% smoked.

The median LGI was 1.47. The patients were grouped according to the LGI tertiles corresponding to the 33rd and 66th percentiles, which were 1.207 and 1.773, respectively. When analyzing these groups, the median age was significantly higher as the LGI increased (Table 1). Women and diabetics presented with a significantly higher frequency in higher tertiles, while those with smoking habit predominated in the lowest. Other baseline characteristics are detailed in table 1.

Regarding the clinical and laboratory variables at admission according to tertiles, there were no differences in systolic and diastolic blood pressure; however, the heart rate, blood glucose, serum creatinine, blood count, neutrophil and lymphocyte count at admission were significantly higher in patients in the higher tertiles. Similarly, these groups of patients presented with a significantly higher frequency in higher tertiles, while those with smoking habit predominated in the lowest. Other baseline characteristics are detailed in table 1.

During mean follow-up of 278 ± 8 days, 88 deaths were recorded. The mortality rate was 25.6%, which was significantly increased by LGI tertiles (p<0.0001) and reached 55.7% in tertile 3 (Figure 1). The median LGI among patients who survived and died was significantly different, being higher in those who died (1.34 vs. 2.18, respectively, p<0.0001).

The area under the LGI curve was 0.715 (95% CI:
Leucoglycaemic index is a predictor of mortality in acute myocardial infarction

There were significant differences when comparing survival, which decreased according to the LGI tertiles (p<0.0001). Survival was also significantly lower (Table 2 and Figure 3), in those patients with an LGI>2.2 (p<0.0001).

In the multivariate analysis, LGI>2.2 was a predictor of one-year mortality for all causes (HR 3.562, 95% CI: 2.091-6.071, p<0.0001), regardless of age, sex, Killip-Kimball>1, systolic blood pressure, serum creatinine and diabetes mellitus (Table 3).

DISCUSSION

In the present study, the prognostic value at 1-year LGI was evaluated in patients with ST-segment elevation AMI. Several investigations have confirmed the importance of blood count and its differential as a predictor of death and other long-term adverse...
events. Núñez et al., in a prospective study of 1118 consecutive patients with acute coronary syndrome, showed, during an average 10 months follow-up, that patients with a higher white blood cell count in the first hours of admission were more likely to die. Another prospective study with 1037 patients, and a mean 23 months follow-up, claims that blood count and its differential is associated with a worse prognosis. An edge of this inflammatory marker has also been extensively evaluated: the neutral-lymphocyte index, with solid evidence supporting the white blood cell count and its differential as an independent marker of poor long-term prognosis.

Figure 1. Incidence of mortality according to leuco-glycaemic index tertiles.

Figure 2. ROC curves showing the discrimination capacity and the optimal cut-off point of the leuco-glycaemic index to predict mortality. AUC, area under the curve; CI: confidence interval.

Figure 3. Kaplan-Meier survival curves of the patients studied, at 365 days, according to tertiles and leuco-glycaemic index cut-off point.

Table 2. Survival according to tertiles and LGI cut-off point.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Survival average</th>
<th>Typical error</th>
<th>CI 95%</th>
<th>p (Log Rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertil 1</td>
<td>330.412</td>
<td>9.720</td>
<td>311.362-349.463</td>
<td></td>
</tr>
<tr>
<td>Tertil 2</td>
<td>288.983</td>
<td>13.417</td>
<td>262.685-315.280</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tertil 3</td>
<td>217.313</td>
<td>16.363</td>
<td>185.242-249.384</td>
<td></td>
</tr>
<tr>
<td>LGI>2.2</td>
<td>177.420</td>
<td>19.746</td>
<td>138.718-216.122</td>
<td><0.0001</td>
</tr>
<tr>
<td>LGI<2.2</td>
<td>309.962</td>
<td>7.842</td>
<td>294.592-325.332</td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>278.753</td>
<td>8.171</td>
<td>262.739-294.767</td>
<td>-</td>
</tr>
</tbody>
</table>

LGI, leuco-glycaemic index

Table 3. Cox, uni and multivariable proportional hazards models to evaluate the predictors of mortality per year of patients with ST-segment elevation AMI.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariable</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>LGI >2.2</td>
<td><0.0001</td>
<td>4.187</td>
</tr>
<tr>
<td>Killip Kimball>I</td>
<td><0.0001</td>
<td>5.868</td>
</tr>
<tr>
<td>Female sex</td>
<td><0.0001</td>
<td>2.192</td>
</tr>
<tr>
<td>Age (years)</td>
<td><0.0001</td>
<td>1.057</td>
</tr>
<tr>
<td>Creatinine (mmol/L)</td>
<td><0.0001</td>
<td>1.005</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td><0.0001</td>
<td>0.972</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td><0.0001</td>
<td>2.393</td>
</tr>
</tbody>
</table>

BP, blood pressure; CI, confidence interval; LGI, leuco-glycaemic index.

Many mechanisms have been proposed that explain such results. Stimulated neutrophils release free radicals, proteolytic enzymes and arachidonic acid metabolites, which increase the infarction size and lead to electric instability of the heart through endothelial damage, coagulation cascade activation, leu- kocyte aggregation and its deposition in microarteries. Microparticles derived from these activated polymorphonuclear leukocytes can favor the coagulation cascade and perpetuate thrombi formation, since they can activate and favor the expression of P-selectin on the platelet. In addition, elevated levels of inflammatory markers in the blood have been observed in patients with heart failure for several reasons, suggesting the strong relationship with pump failure.

On the other hand, glycemia as a long-term prognostic marker in patients with AMI has also been studied. A valuable study with 11324 patients shows that their admission values are a powerful predictor of mortality 20 years after having suffered an AMI. Planer et al, based on the records of the multinational clinical trial HORIZONS-AMI, establish that glycemia in the first 24 hours of admission is an independent predictor of mortality at 30 days and at 3 years. Similar results were obtained in a previous study by Monteiro et al. Hyperglycaemia is related to the size of the infarction, a greater Killip-Kimball class, low left ventricular ejection fraction, cardiogenic shock, need for resuscitation due to cardiorespiratory arrest and increased concentrations of myocardial necrosis markers. The increase of vasoconstrictive and inflammatory factors during hyperglycemia contributes to the damage of endothelial function and increases the production of free radicals with the consequent oxidative stress. In addition, there is a state of insulin resistance in which lipolysis causes free fatty acids to be released which hinders the transportation of glucose into the myocardial cell, and its oxidation generates superoxide anions. It also produces an alteration in platelet metabolism.
and changes in the intraplatelet signaling mechanisms, which may contribute to the development of atherothrombotic complications.

The theoretical and practical evidence of the LGI components separately, as factors of worse short and long term prognosis, suggests the logical association of these in an index. Previous observations have shown that LGI constitutes a marker of poor prognosis during hospital stay. Quiroga et al. were the first to associate LGI with death and complications during hospital stay, while Benítez Díaz et al. were able to reproduce their results but with a 30-day follow-up period. Among other studies confirming the prognostic value of LGI through multivariate analysis, highlights that of Hirschson et al. when analyzing a total of 405 patients in 87 Argentinian institutions. Seoane et al. in another clinical context (postoperative period of cardiac surgery) also demonstrate—in 2743 patients—the usefulness of LGI as a predictor of poor in-hospital outcome.

However, none of the cited authors analyzes the prognostic value of LGI to predict mortality beyond 30 days; which is evaluated in the present investigation and identified as an independent predictor of mortality per year, after adjusting other variables with recognized prognostic value. In addition, this work also demonstrates for the first time that the higher LGI is a good predictor of shorter survival at 365 days in patients with AMI.

The optimal cut-off point obtained by the ROC curve to predict mortality at one year was 2.2. These results differ with the rest of the analyzed researches. Quiroga et al., León-Aliz et al., Hirschson Prado et al. and Seoane et al. found an optimal cut-off value of 1.6; 1.158; 1.00 and 2.0, respectively. These differences can be attributed mainly to the analysis period and that all assess the prognostic value of LGI in the short term, with heterogeneous samples in terms of its size and composition, and with different primary end objectives.

Study limitations
It is the experience of a single institution and the size of the sample is relatively small, although this did not prevent obtaining solid results. No data were available on the left ventricular ejection fraction, myocardial reperfusion state, or quantity and severity of the affected coronary vessels in the entire sample. In addition, the low availability of primary percutaneous coronary intervention influences the poor in-hospital survival of patients, which determines the occurrence of fewer final events after hospital discharge.

CONCLUSIONS
The results from this work support the theoretical and practical basis of the leuko-glycaemic index as a predictor of adverse events per year, in the context of acute myocardial infarction. Its simplicity, wide availability, low cost and the fact of being part of the paraclinical routine examinations performed at admission, in patients with acute coronary syndrome, further support its potential application in early risk stratification. Future larger samples multi-center studies are necessary to confirm our observations, as well as the prognostic capacity of the leukoglycaemic index in association with risk scales.

REFERENCES

CorSalud 2019 Jan-Mar;11(1):21-29

25. Deckers JW, van Domburg RT, Akkerhuis M, Nauta ST. Relation of admission glucose levels, short-

