Avances en el conocimiento de las bases moleculares y celulares de las cardiopatías congénitas. Parte 2 y última: Cardiopatías congénitas

Noel Taboada Lugo

Texto completo:

HTML PDF PDF (English)

Resumen

Las cardiopatías congénitas son los defectos congénitos más frecuentes en los seres humanos. Se realizó una revisión de la literatura médica con el objetivo de identificar los avances más recientes en el conocimiento de las bases moleculares y celulares de las cardiopatías congénitas. La información obtenida se dividió en dos partes: en la primera se dirigió la atención a los genes y a la morfogénesis cardíaca, y esta segunda parte la complementa, haciendo hincapié en las cardiopatías congénitas propiamente dichas.

Referencias

Taboada Lugo N. Avances en el conocimiento de las bases moleculares y celulares de las cardiopatías congénitas. Parte 1 de 2: Morfogénesis cardíaca. CorSalud [Internet]. 2019 [citado 18 Dic 2019];11(3):233-40. Disponible en: http://www.revcorsalud.sld.cu/index.php/cors/article/view/350/916

Postma AV, Bezzina CR, Christoffels VM. Genetics of congenital heart disease: The contribution of the noncoding regulatory genome. J Hum Genet. 2016;61(1):13-9.

Lalani SR, Belmont JW. Genetic basis of congenital cardiovascular malformations. Eur J Med Genet. 2014;57(8):402‑13.

Edwards JJ, Gelb BD. Genetics of congenital heart disease. Curr Opin Cardiol. 2016;31(3):235-41.

Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060-5.

Pawlak M, Niescierowicz K, Winata CL. Decoding the heart through next generation sequencing approaches. Genes (Basel) [Internet]. 2018 [citado 6 Oct 2018];9(6):289. Disponible en: https://www.mdpi.com/2073-4425/9/6/289/htm

LaHaye S, Corsmeier D, Basu M, Bowman JL, Fitzgerald-Butt S, Zender G, et al. Utilization of whole exome sequencing to identify causative mutations in familial congenital heart disease. Circ Cardiovasc Genet. 2016;9(4):320-9.

Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res. 2017;120(6):908-22.

Calcagni G, Unolt M, Digilio MC, Baban A, Versacci P, Tartaglia M, et al. Congenital heart disease and genetic syndromes: New insights into molecular mechanisms. Expert Rev Mol Diagn. 2017;17(9):861-70.

Li F, Zhou J, Zhao DD, Yan P, Li X, Han Y, et al. Characterization of SMAD3 gene variants for possible roles in ventricular septal defects and other congenital heart diseases. PLoS ONE [Internet]. 2015 [citado 10 Oct 2018];10(6):e0131542. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131542

Cao Y, Wang J, Wei C, Hou Z, Li Y, Zou H, et al. Genetic variations of NKX2-5 in sporadic atrial septal defect and ventricular septal defect in Chi-nese Yunnan population. Gene. 2016;575(1):29‑33.

Moore KL, Persaud TVN. Aparato Cardiovascular. En: Embriología Clínica. 8ª ed. Barcelona: Elsevier; 2011. p. 286-336.

Han H, Chen Y, Liu G, Han Z, Zhao Z, Tang Y. GATA4 transgenic mice as an in vivo model of congenital heart disease. Int J Mol Med. 2015;35(6):1545-53.

Pan Y, Wang ZG, Liu XY, Zhao H, Zhou N, Zheng GF, et al. A novel TBX1 loss-of-function mutation associated with congenital heart disease. Pediatr Cardiol. 2015;36(7):1400-10.

Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, et al. GATA5 loss‑of‑function mutations associated with congenital bicuspid aortic valve. Int J Mol Med. 2014;33(5):1219‑26.

Wang X, Ji W, Wang J, Zhao P, Guo Y, Xu R, et al. Identification of two novel GATA6 mutations in patients with nonsyndromic conotruncal heart defects. Mol Med Rep. 2014;10(2):743‑8.

Al‑Qattan MM, Abou Al‑Shaar.H. Molecular basis of the clinical features of Holt-Oram syndrome resulting from missense and extended protein mutations of the TBX5 gene as well as TBX5 intragenic duplications. Gene. 2015;560(2):129‑36.

Zhang M, Li X, Liu XY, Hou JY, Ni SH, Wang J, et al. TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp Ther Med. 2018;15(1):447-53.

Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, et al. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol. 2014;114(12):1891‑5.

Zheng J, Li F, Liu J, Xu Z, Zhang H, Fu Q, et al. Investigation of somatic NKX2-5 mutations in Chi-nese children with congenital heart disease. Int J Med Sci. 2015;12(7):538‑43.

Huang RT, Wang J, Xue S, Qiu XB, Shi HY, Li RG, et al. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci. 2017;14(4):323-32.

Wang J, Mao JH, Ding KK, Xu WJ, Liu XY, Qiu XB, et al. A novel NKX2.6 mutation associated with congenital ventricular septal defect. Pediatr Car-diol. 2015;36(3):646‑56.

Monroy-Muñoz IE, Pérez-Hernández N, Vargas-Alarcón G, Ortiz-San Juan G, Buendía-Hernández A, Calderón-Colmenero J, et al. Cambiando el paradigma en las cardiopatías congénitas: de la anatomía a la etiología molecular. Gac Méd Mex. 2013;149(2):212-9.

Zhang W, Shen L, Deng Z, Ding Y, Mo X, Xu Z, et al. Novel missense variants of ZFPM2/FOG2 identified in conotruncal heart defect patients do not impair interaction with GATA4. PLoS One [Internet]. 2014 [citado 6 Ene 2019];9(7):e102379. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102379

Liu AP, Chow PC, Lee PP, Mok GT, Tang WF, Lau ET, et al. Under-recognition of 22q11.2 dele-tion in adult Chinese patients with conotruncal anomalies: implications in transitional care. Eur J Med Genet. 2014;57(6):306‑11.

Chen M, Yang YS, Shih JC, Lin WH, Lee DJ, Lin YS, et al. Microdeletions/duplications involving TBX1 gene in fetuses with conotruncal heart de-fects which are negative for 22q11.2 deletion on fluorescence in-situ hybridization. Ultrasound Obstet Gynecol. 2014;43(4):396‑403.

High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest. 2009;119(7):1986-96.

Chen XM, Guo K, Li H, Lu QF, Yang C, Yu Y, et al. A novel mutation KCNQ1p.Thr312del is responsible for long QT syndrome type 1. Heart Vessels. 2019;34(1):177-88.

Matsusue A, Yuasa I, Umetsu K, Nakayashiki N, Dewa K, Nishimukai H, et al. The global distribution of the p.R1193Q polymorphism in the SCN5A gene. Leg Med (Tokyo). 2016;19:72-6.

Oshima Y, Yamamoto T, Ishikawa T, Mishima H, Matsusue A, Umehara T, et al. Postmortem genetic analysis of sudden unexpected death in infancy: neonatal genetic screening may enable the prevention of sudden infant death. J Hum Genet. 2017;62(11):989-95.

Taboada Lugo N, Herrera Martínez M. Mecanismos epigéneticos y vía de señalización Notch en el origen de diferentes defectos congénitos. Medicentro [Internet]. 2018 [citado 9 Oct 2018];22(3):197-207. Disponible en: http://medicentro.sld.cu/index.php/medicentro/article/view/2645/2213

Chen H, VanBuren V. A provisional gene regulatory atlas for mouse heart development. PLoS ONE [Internet]. 2014 [citado 9 Oct 2018];9(1):e83364. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083364

Hobbs CA, Cleves MA, MacLeod SL, Erickson SW, Tang X, Li J, et al. Conotruncal heart defects and common variants in maternal and fetal genes in folate, homocysteine, and transsulfuration pathways. Birth Defects Res A Clin Mol Teratol. 2014;100(2):116-26.

Taboada Lugo N. Papel del ácido fólico, zinc y cobre en la prevención primaria de los defectos congénitos. Rev Cuban Med Gen Integr [Internet]. 2016 [citado 6 Oct 2018];32(4). Disponible en: http://www.revmgi.sld.cu/index.php/mgi/article/view/167/110

Serra-Juhé C, Cuscó I, Homs A, Flores R, Torán N, Pérez-Jurado LA. DNA methylation abnormalities in congenital heart disease. Epigenetics. 2015;10(2):167-77.

Vecoli C, Pulignani S, Foffa I, Andreassi MG. Congenital heart disease: The crossroads of genetics, epigenetics and environment. Curr Genomics. 2014;15(5):390-9.

Elsayed GM, Elsayed SM, Ezz-Elarab SS. Maternal MTHFR C677T genotype and septal defects in offspring with Down syndrome: A pilot study. Egypt J Med Hum Genet. 2014;15(1):39-44.

Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016;18(9):914-23.

Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, et al. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One [Internet]. 2014 [citado 9 Oct 2018];9(8):e104535. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128709/pdf/pone.0104535.pdf

Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, et al. Molecular pathophysiology of congenital long QT syndrome. Physiol Rev. 2017;97(1):89-134.

El-Sherif N, Turitto G, Boutjdir M. Congenital Long QT syndrome and torsade de pointes. Ann Noninvasive Electrocardiol [Internet]. 2017 [citado 10 Ene 2019];22(6):e12481. Disponible en: https://doi.org/10.1111/anec.12481

Horie M. Extensive diversity of molecular mechanisms underlying the congenital long QT syndrome type 1. Can J Cardiol. 2018;34(9):1108-9.

Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.